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ABSTRACT
Dkk1 is a secreted antagonist of the LRP5-mediated Wnt signaling pathway that plays a pivotal role in bone biology. Because there are no

well-documented LRP5-based assays of Dkk1 binding, we developed a cell-based assay of Dkk1/LRP5 binding using radioactive 125I-Dkk1. In

contrast to LRP6, transfection of LRP5 alone into 293A cells resulted in a low level of specific binding that was unsuitable for routine assay.

However, co-transfection of LRP5with the chaperone proteinMesD (which itself does not bind Dkk1) or Kremen-2 (a known Dkk1 receptor), or

both, resulted in amarked enhancement of specific binding that was sufficient for evaluation of Dkk1 antagonists. LRP5 fragments comprising

the third and fourth b-propellers plus the ligand binding domain, or the first b-propeller, each inhibited Dkk1 binding, with mean IC50s of 10

and 196 nM, respectively. The extracellular domain of Kremen-2 (‘‘soluble Kremen’’) was a weaker antagonist (mean IC50 806 nM). We also

found that cells transfected with a high bone mass mutation LRP5(G171V) had a subtly reduced level of Dkk1 binding, compared to wild type

LRP5-transfected cells, and no enhancement of binding by MesD. We conclude that (1) LRP5-transfected cells do not offer a suitable cell-

based Dkk1 binding assay, unless co-transfected with either MesD, Kremen-2, or both; (2) soluble fragments of LRP5 containing either the

third and fourth b-propellers plus the ligand binding domain, or the first b-propeller, antagonize Dkk1 binding; and (3) a high bone mass

mutant LRP5(G171V), has subtly reduced Dkk1 binding, and, in contrast to LRP5, no enhancement of binding with MesD. J. Cell. Biochem.

108: 1066–1075, 2009. � 2009 Wiley-Liss, Inc.
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D kk1 is a secreted 256 amino acid protein antagonist of the

Wnt signaling pathway that is currently being investigated

as a potential therapeutic target for cancer, neurodegenerative

diseases and osteoporosis. Dkk1 is associated with the metastasis

and pathophysiology of certain bone-associated cancers such as

myeloma [Politou et al., 2006; Kaiser et al., 2008; Heider et al.,

2009], osteosarcoma [Lee et al., 2007], prostate cancer [Hall and

Keller, 2006] and breast cancer [Voorzanger-Rousselot et al., 2007]

and has been proposed to be the principal mediator of neurode-

generation associated with cerebral ischemia and Alzheimer’s

disease [Zhang et al., 2008; Mastroiacovo et al., 2009]. Dkk1’s

importance in the skeleton is reflected in the observations that the

Dkk1þ/� mouse has increased bone mass [Morvan et al., 2006], a

Dkk1 over-expressing transgenic mouse has osteopenia [Li et al.,

2006], and an anti-Dkk1 antibody has been shown to increase bone

mass in a preclinical model [Glantschnig et al., 2008]. Dkk1

antagonizes Wnt signaling by binding to receptors from two

different families, namely LRP6 and LRP5, on the one hand [Bafico

et al., 2001], and Kremen 1 and Kremen 2 on the other [Mao et al.,

2002].

LRP5 and LRP6 are transmembrane proteins of the LDL receptor

family that contain four extracellular b-propeller domains and a

classical LDL ligand binding domain as well as a transmembrane

domain and a short intracellular signaling domain [Brown et al.,
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1998; Hey et al., 1998; Springer, 1998; Jeon et al., 2001; Bhat et al.,

2007]. They act as co-receptors for Wnts, with receptors of the

Frizzled family, such that Frizzled proteins cannot activate the

canonical Wnt pathway in the absence of LRP5 or LRP6 [Tamai et al.,

2000; Wehrli et al., 2000]. The extracellular regions of LRP5 and

LRP6 interact with the Wnt antagonists Dkk1 [Mao et al., 2001a] and

sclerostin (SOST) [Ellies et al., 2006; Balemans et al., 2008], while the

intracellular regions interact with the scaffolding protein Axin [Mao

et al., 2001b] and the canonical Wnt pathway antagonist glycogen

synthase kinase-b [Piao et al., 2008]. Wnt binding to a Frizzled

receptor results in the formation of a complex that includes Wnt,

Frizzled, and LRP5 or LRP6, and that leads to activation of the Wnt

pathway; but the details of the intermolecular binding of this

complex are not well understood [Cadigan and Liu, 2006].

Kremens (Kremen-1 and Kremen-2) are also transmembrane

receptors for Dkk1 but do not associate with Frizzled receptors.

Instead they antagonize Wnt signaling by binding to the opposite

side [Wang et al., 2008] of Dkk1 that binds LRP5/6, thus forming a

ternary complex with Dkk1 acting as a scaffold protein. In one

model of Wnt antagonism, the ternary complex of Kremen/Dkk/

LRP5/6 dissociates from its Frizzled co-receptor and is internalized,

thereby terminating Wnt signaling [Mao et al., 2002]. In another

model, that does not require Kremen binding, Dkk1 disrupts the

Wnt-induced Frizzled/LRP5/6 complex [Semenov et al., 2001], and

Dkk1 does not induce internalization of LRP6 [Semenov et al., 2008].

Furthermore, there appears to be additional complexity, as there is

recent evidence that, in the absence of Dkk1, Kremens can act as

LRP6 chaperones, promoting Wnt signaling through cell surface

expression of the receptor [Hassler et al., 2007], rather than

inhibiting it.

MesD is a 195 amino acid protein (in the mouse) that acts as a

chaperone for LRP5 and LRP6, playing an important role in the

conversion of low molecular weight, immature forms of LRP5/6 into

higher molecular weight, mature protein [Hsieh et al., 2003], and

also preventing LRP5/6 intermolecular disulfide-bonded aggregates

[Hsieh et al., 2003]. Cell surface expression of LRP5/6 is essential for

Dkk1 binding, and MesD has been shown to enhance cell surface

expression of LRP5 [Hsieh et al., 2003]. The C-terminal region

(residues 150–195) ofMesD is necessary and sufficient for both LRP6

folding and LRP6 binding [Li et al., 2005]. A recently published

solution structure suggests that a highly charged, polarized core

region in MesD (residues 104–177) may be involved in protein-

protein interaction [Kohler et al., 2006]. It should also be noted that

MesD has been reported to potentially have dual, opposing, roles

in LRP5/6 biology. In addition to functioning as a chaperone

intracellularly, MesD can, if applied extracellularly, compete with

Dkk1 for binding to LRP6 [Li et al., 2005].

Our group is interested in exploiting the central role that Wnt

signaling plays in bone physiology [Westendorf et al., 2004;

Levasseur et al., 2005; Krishnan et al., 2006; Yavropoulou and

Yovos, 2007] for the development of an osteoporosis treatment. Wnt

signaling is instrumental in osteoblast differentiation and survival,

and is activated as part of the osteogenic response to parathyroid

hormone [Murrills, 2006; Kousteni and Bilezikian, 2008], mechan-

ical loading [Hens et al., 2005; Robinson et al., 2006] and BMP [Chen

et al., 2007]. Additionally, Wnt/b-catenin signaling is implicated in

the control of osteoclast differentiation through modulation of

osteoclastogenic regulators OPG and RANKL [Glass et al., 2005;

Holmen et al., 2005; Jackson et al., 2005]. In addition to the effects of

Dkk1 knockout on bone mass, transgenic and knockout mice of

other Wnt signaling proteins such as Axin2, LRP5, b-catenin, SFRP-

1 and sclerostin have significant skeletal phenotypes [Babij et al.,

2003; Bodine et al., 2004; Yu et al., 2005; Glass and Karsenty, 2006;

Li et al., 2008], and mutations in LRP5 and sclerostin are each

associated with significant high or low bone mass conditions in

humans [Gong et al., 2001; Boyden et al., 2002; Little et al., 2002;

Van Wesenbeeck et al., 2003]. Of particular interest to us, one

specific mutation, the LRP5(G171V), located in the first b-propeller

of the extracellular region of LRP5, was identified as the cause of

high bone mass in a group of related patients in the United States

[Little et al., 2002], and additional mutations have subsequently

been identified in the first b-propeller of LRP5 that also result in

high bone mass conditions [Van Wesenbeeck et al., 2003; Balemans

et al., 2007]. The cellular mechanism whereby LRP5(G171V) induces

high bone mass has been widely investigated. Transfection of the

high bone mass mutant LRP5 alone does not activate the canonical

Wnt signaling pathway [Boyden et al., 2002]; however, transfection

of LRP5(G171V) and other high bone mass propeller 1 mutants can

blunt the inhibitory effects of Dkk1 on canonical Wnt signaling

[Boyden et al., 2002; Balemans et al., 2007; Bhat et al., 2007]. The

most straightforward mechanism to explain the data would be for

Dkk1 to bind LRP5(G171V) with lower affinity than native LRP5,

thus resulting in reduced inhibition. However, deletion studies with

LRP5 implicate b-propellers 3 and 4 as requirements for the binding

of the closely related LRP6 to Dkk1 [Mao et al., 2001a], whereas the

mutation for the high bone mass LRP5(G171V) is in the first b-

propeller [Little et al., 2002]. An alternate mechanism for the

reduction in Dkk1 sensitivity has been proposed. This involves a

decreased interaction of LRP5(G171V) with the chaperone protein

MesD that is responsible for trafficking LRP5 to the cell surface,

resulting in less LRP5(G171V) reaching the cell surface and being

available for Dkk1 inhibition [Zhang et al., 2004]. Supporting this

idea, MesD has been reported to have a reduced interaction with

both the high bonemass mutation LRP5 (G171V) [Zhang et al., 2004;

Ai et al., 2005], which is located in the first b-propeller of LRP5, and

also the LRP6 hypomorphic mutation R886W (Ringelschwanz)

[Kubota et al., 2008], which is located in third YWTD b-propeller

domain of LRP6. However, not all high bone mass mutants with

mutations in the first b-propeller fail to bind MesD, reducing the

likelihood that reduced MesD interaction is responsible for the high

bone mass phenotype, and suggesting an effect of first b-propeller

mutations on other aspects of LRP5 biology [Ai et al., 2005].

Following the discovery that sclerostin (SOST), which is related to

the classic BMP antagonists Dan and Cerberus, is also a Dkk1

antagonist that interacts with the first b-propeller, it was shown that

high bone mass mutants all exhibited reduced inhibition by SOST in

functional assays, in addition to reduced inhibition by Dkk1 [Ellies

et al., 2006; Balemans et al., 2008].

In order to enhance our efforts to discover a canonical Wnt

pathway activator that would mimic the anabolic effects of the high

bone mass LRP5 mutations, we wanted to develop a reliable Dkk1

cell-based binding assay based on LRP5, and in addition, wished to
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learn more about the effects on Dkk1 binding of the high bone mass

mutation LRP5(G171V). There have been several reports of labeled

Dkk1 binding to cells expressing LRP6 [Bafico et al., 2001; Mao

et al., 2001a; Brott and Sokol, 2002; Li et al., 2005; Binnerts et al.,

2007; Wang et al., 2008], but only two reports [Bafico et al., 2001;

Glantschnig et al., 2004], one of them preliminary [Glantschnig

et al., 2004], that mention binding of a labeled Dkk1 to cells

expressing LRP5, and none that describe antagonists of Dkk1

binding to LRP5. Given the observed differences between Dkk1

binding to LRP5 and LRP6 noted in the published literature [Bafico

et al., 2001], we also wished to explore ways of enhancing the

binding of Dkk1 to LRP5 in a cell-based assay format.

MATERIALS AND METHODS

CELLS, PLASMIDS, AND REAGENTS

293A cells. 293A cells were obtained from ATCC and maintained in

growth medium DMEM (Invitrogen) containing 10% FBS (Atlanta

Biologicals, Lawrenceville, GA), 1% sodium pyruvate and 1%

Glutamax.

DNA plasmids. The full-length cDNAs encoding human LRP5,

the LRP5–G171V (HBM) mutant, LRP6, MesD and Kremen-2 were

engineered into the pcDNA3.1 vector (Invitrogen, Carlsbad, CA) with

a consensus Kozak sequence immediately upstream of the initiating

ATG.

Dkk1. C-terminally c-myc- and 6xHis-tagged human Dkk1

(NP_036374.1) was cloned into pDNA3.1 vector and transfected

into HEK293T using Lipofectamine 2000/Opti-MEM (Invitrogen) and,

following removal of the Lipofectamine after 4–6 h, cultured in Opti-

MEM for 48h. Conditioned media was collected and Dkk1 purified

using a Ni column followed by graded imidazole elutions. Dkk1-

containing fractions were identified on dot blots using HRP anti-myc

antibody (Invitrogen cat # R951-25) and the ECL Plus Western Blot

Detection System (Amersham cat # RPN2132). Fractions containing

Dkk1 were then pooled and EDTA and Tween20 added to final

concentrations of 0.5mM and 0.1%. The pooled fractions were then

concentrated by centrifugation at 3,000 rpmusing a Centricon YM-30

cellulose membrane (Millipore), protein concentration and purity

determined using the Bradford assay and SDS–PAGE and aliquots

frozen with liquid nitrogen and stored at �808C. Activity of the

purified Dkk1 was confirmed by its ability to suppress a Wnt

3a-stimulated TCF-luciferase signal in U2OS cells. The purified hDkk1

ran at �35kDa on a Western, and its activity in the TCF assay

was sensitive to tunicamycin treatment, consistent with it being

glycosylated. The procedure is also described in detail in US Patent

US20080038775A1. Additional hDkk1 (same construct) was obtained

from Roche (Nutley, NJ), and purified from conditioned media of

hDkk1-transfected HEK293 EBNA cells using a single step Ni IMAC

chromatography. Aliquots were 125I-labeled at GE Healthcare

(Amersham) using the Chloramine-T method, freeze-dried in

50mCi aliquots and stored at �208C.
LRP5 prop 3,4-LBD. C-terminally V5- and 6xHis-tagged human

LRP5 prop 3,4-LBD (Val642–Pro1376) was cloned into pDNA3.1

vector and co- transfected into HEK293T cells along with RAP in

pCMVSport6 vector, using Lipofectamine/Opti-MEM (Invitrogen)

and, following removal of the Lipofectamine after 4–6 h, cultured in

Opti-MEM for 48 h. Conditioned media was collected and stored

frozen. Thawed conditioned medium was adjusted to 0.5M NaCl,

5mM imidazole containing 1mM PMSF and protease inhibitor

cocktail (Roche Cat # 1873580). LRP5 prop 3,4-LBD was then

purified using a Ni column and graded imidazole (up to 1,000mM)

elution and identified in the ensuing fractions on dot-blots using

HRP anti-V5 antibody (Invitrogen cat # R961-25) and the ECL

Plus Western Blot Detection System (Amersham cat # RPN2132).

Fractions containing LRP5 prop 3,4-LBD were then pooled and

concentrated by centrifugation at 3,000 rpm using a Centricon YM-

30 cellulose membrane (Millipore), protein concentration and purity

determined using the Bradford assay and SDS–PAGE and aliquots

frozen with liquid nitrogen and stored at �808C.
LRP5 prop 1. C-terminally 6xHis-tagged LRP5 prop 1 (Ser32-

Glu341) was transiently transfected into 293 cells. Conditioned

media was collected and purified by Ni column, using a loading

buffer of 25mM Tris pH 7.5 containing 0.5M NaCl, 5% glycerol and

5mM imidazole, followed by size exclusion chromatography

(Superdex 200) at room temperature using 25mM Tris pH 7.5

buffer containing 0.5M NaCl and 5% glycerol.

Soluble Kremen. Monomeric recombinant human Kremen-2

extracellular domain (‘‘soluble Kremen’’) was obtained from R&D

Systems, Inc. (catalog #1946-KR). This is a C-terminally 10xHis-

tagged construct of hKremen-2 19-364 with an N-terminal

16 amino-acid CD33 signal peptide that has been shown to

bind to Dkk1 in an immobilized ELISA assay. The calculated

molecular weight of 38K was used to determine molarity; however

glycosylation may bring the actual molecular weight up to 59–63K

(R&D Systems Product sheet).

Dkk1 binding assay. Dkk1 binding was assayed using a protocol

modified from Bafico et al. [2001]. 293A cells were plated at a density

of 40–70K (48-well plates) or 150K (24-well plates) in growth

medium (DMEM containing 10% FBS, 1% sodium pyruvate, and

1% Glutamax) and incubated 24h without antibiotics until 70–80%

confluent, before being transfected with appropriate DNA plasmids

using Lipofectamine 2000 (Invitrogen) or FuGENE 6 (Roche Applied

Science), according to the manufacturers’ instructions. In addition to

the construct(s) of interest, cells were also co-transfected, as

appropriate, with pcDNA to ensure equal amounts of transfected

DNA in each treatment, including control wells.

Following transfection, cells were incubated 24 h to permit

protein expression, after which they were washed 2� with serum-

free growth medium containing 25mM HEPES pH 7.5, 1mg/ml

heparin and 1% BSA (assay buffer). Cells were then exposed to

0.4 nM 125I-Dkk1 in assay buffer for 3 h at room temperature, after

which they were washed 2� with assay buffer and lysed by adding

0.5% SDS in PBS. The lysate was then transferred to 12mm tubes

and radioactivity assayed using a g-counter. Non-specific binding

was estimated by blocking binding of the radiolabeled Dkk1 with an

excess (40–400 nM) of cold Dkk1. Specific binding was calculated by

subtracting non-specific binding from the total counts.

STATISTICS

Specific counts were analyzed for statistical significance

using ANOVA, with or without log transformation as appro-
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priate, followed by tests of least significant difference (SAS

Excel).

RESULTS

BINDING OF 125I-DKK1 TO LRP5- AND

LRP6-TRANSFECTED CELLS

In contrast to LRP6, which resulted in robust binding of 125I-Dkk1,

LRP5 transfection of 293A cells resulted in only modest

increases in specific 125I-Dkk1 binding to 293A cells (Fig. 1). The

amount of ligand bound specifically to LRP5-transfected cells was

generally well below the 70% preferred for a binding assay (Fig. 1,

Table I).

ENHANCEMENT OF DKK1 BINDING TO LRP5 BY MESD

AND KREMEN-2

We were able to increase the level of 125I-Dkk1 binding to LRP5-

transfected cells by co-transfecting either Kremen-2 or MesD, or

both (Fig. 2). MesD, when transfected alone into 293A cells, resulted

in no increase in Dkk1 binding, while transfection of Kremen-2

alone (750–1,500 ng/well) increased specific 125I-Dkk1 binding to

293A cells consistent with its known ability to bind Dkk1

(Fig. 2B, Table I). Cells co-transfected with LRP5 together with

MesD, or Kremen-2, bound 125I-Dkk1 robustly (Fig. 2A,B, Table I). A

combination of LRP5, Kremen-2 and MesD resulted in even greater

binding of 125I-Dkk1 (Fig. 2B). The level of ligand bound specifically

was >70% only when LRP5 was co-transfected with Kremen-2,

MesD or both (Table I).

BLOCKING OF DKK1 BINDING

As expected, cold Dkk1 was able to reproducibly displace 125I-Dkk1

from cells transfected with LRP5, with mean IC50s of 0.124 nM

(LRP5þKremen transfection) (Fig. 3A) and 0.437 nM (LRP5þMesD

transfection), confirming the specific nature of 125I-Dkk1 binding. A

fragment of LRP5 containing propellers 3 and 4 and the ‘‘ ligand

binding domain,’’ ‘‘LRP5 prop 3,4-LBD,’’ was a potent antagonist of
125I-Dkk1 binding to LRP5 under various co-transfection conditions

(mean IC50¼ 0.010mM; Fig. 3B). An LRP5 fragment containing just

propeller 1 was an approximately 20-fold weaker inhibitor of Dkk1

binding (mean IC50¼ 0.196mM; Fig. 3C). Finally, the weakest of the

antagonists tested was a soluble Kremen-2 construct, which had a

mean an IC50 of 0.806mM (Fig. 3D).

THE LRP5(G171V) HBM MUTATION

Transfection of the LRP5(G171V) ‘‘high bone mass’’ mutant resulted

in low levels of 125I-Dkk1 binding (Fig. 4), that were generally

lower than that observed with wild type LRP5 (median ratio of

HBM:LRP5 specific counts was 0.589:1 at 375 ng/well dose; 0.574:1

at 750 ng/well dose, with 8 of 20 direct comparisons being

significantly lower than LRP5). Co-transfection of LRP5(G171V)

with Kremen-2 resulted in enhanced binding of 125I-Dkk1, similar to

LRP5. However, analysis of all direct comparisons, including those

without a pcDNA comparator, revealed that the combination of

Fig. 1. Comparison of 125I-Dkk1 binding to 293A cells transfected with LRP5 or LRP6. 293A cells were plated at 150 K cells/well in 24-well plates and transfected with 1.2mg

DNA/well using Lipofectamine 2000. Labels inside bars indicate the % of radioactive label that was specifically bound, that is (specific counts/total counts)� 100. Significantly

different from pcDNA transfection �P< 0.0001. Values are means� SEM, three replicates per treatment.
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LRP5(G171V) with Kremen-2 also trended lower than that of LRP5

with Kremen-2 (median ratio of HBMþKremen:LRP5þKremen

specific counts was 0.872:1 at 750 ng/well dose n¼ 6, and 0.778:1 at

1,500 ng/well dose n¼ 2, with five of eight comparisons being

significantly lower). In sharp contrast to LRP5, however,

LRP5(G171V) showed no enhancement of Dkk1 binding when co-

transfected with MesD (Fig. 4).

DISCUSSION

In this study, LRP5 transfection into 293A cells generally resulted in

low levels of Dkk1 binding. This observation is consistent with

several other workers’ experiences with LRP5-transfected cells.

Bafico et al. [2001] noted that LRP5-transfected NIH3T3 cells had

lower levels of Dkk1 binding than LRP6-transfected cells; Mao et al.

[2001a] did not detect any binding of Dkk1-AP to LRP5; and

Glantschnig et al. [2004] could not demonstrate binding of

fluorescently labeled Dkk1 to LRP5 in transiently transfected cells,

only a stable cell line [Glantschnig et al., 2004]. The presence of

immature or aggregated protein may be responsible for the low

binding of LRP5-transfected cells, as there is evidence in the

literature for LRP5 transfected cells showing two bands of LRP5, one

mature and one immature [Li et al., 2005].

Accordingly, we co-transfected LRP5 with the chaperone protein

MesD and found that this greatly enhanced binding of Dkk1 to

LRP5-transfected cells, presumably through improved protein

maturation and/or transport to the cell surface. Transfection of

Kremen-2 alone, itself a known Dkk1 binder, resulted in a detectable

increase in 125I-Dkk1 binding and when Kremen-2 was co-

transfected with LRP5, this also enhanced binding over LRP5 alone

to an extent that seemed to be at least additive, and frequently more

than additive. It should be noted that the ternary model of Dkk1

binding to LRP5 and Kremen-2, where one molecule of Dkk1 binds

to one molecule each of Kremen-2 and LRP5, would predict that the

introduction of Kremen-2 to cells already expressing LRP5 would

result in formation of ternary complexes containing Kremen-2,

Dkk1 and LRP5, which would in turn result in no net increase in the

amount of Dkk1 bound. Our observations are therefore not

explained by this model, and suggest that Kremen is either not

forming a ternary complex with Dkk1 and LRP5 in our system or is

also playing other roles such as acting as a chaperone for LRP5, or

somehow enhancing the binding affinity of LRP5 for Dkk1. It is

interesting that a recent publication [Hassler et al., 2007], in addition

to a preliminary report [Glantschnig et al., 2004], have described the

formation of an intracellular complex of Kremen and LRP5/6 that is

independent of Dkk1, which may represent a chaperone-like

function of Kremen [Hassler et al., 2007].

Our studies with potential antagonists of Dkk1 binding both

support and extend the published information on Dkk1 binding to

LRP5/6. Although there are no published antagonist studies in the

literature, our observation that a soluble LRP5 construct comprising

the third and fourth b-propellers (and the LBD) was a potent

inhibitor of Dkk1 binding is consistent with the deletion studies

conducted on LRP6 by Mao et al. [2001a], which highlighted these

regions as important for binding of Dkk1, and with the finding that

an internally truncated LRP5 mutant found in hyperparathyroid

tumors and breast cancers that lacks propeller 3 was not inhibited by

Dkk1 [Bjorklund et al., 2007, 2009]. However, it is interesting that

we also detected Dkk1 antagonist activity, albeit somewhat weaker,

of an LRP5 construct containing the first b-propeller only. This

suggests that the first b-propeller of LRP5 may also bind to Dkk1,

whichmay provide a rational explanation for the reduced functional

Dkk1 inhibition observed in high bone mass mutants bearing

mutations in the first b-propeller [Bhat et al., 2007]. A soluble

Kremen receptor was a very weak antagonist of Dkk1 binding. While

Kremen has been shown to bind Dkk1 with high, sub-nanomolar

affinity [Mao et al., 2002], current evidence suggests that Kremen

and LRP5 bind to opposite sides of the Dkk1 molecule [Wang et al.,

2008]. According to this model, a Dkk1 molecule that is bound by

soluble Kremen would still be available for binding to LRP5, and

hence soluble Kremen would induce little inhibition of Dkk1/LRP5

binding.

In contrast to wild-type LRP5, Dkk1 binding to the HBM mutant

LRP5(G171V) was not enhanced by co-transfection with MesD,

although it was with Kremen-2. The LRP5(G171V) mutant has

TABLE I. Effect of Various Transfectants on the Amount of Specific 125I-Dkk1 Binding to 293A Cells

Transfectant Dose (ng/well)

Fold increase over pcDNA (specific counts) % counts specifically bound

Mean Min Max Median Sig/n Mean Min Max Median n

LRP5 375 2.01 1.09 2.83 2.09 6/12 60 38 86 61 12
’’ 750 2.43 1.32 3.56 2.81 3/5 57 35 76 57 5
’’ 1,125 1.96 1.57 2.54 1.77 2/3 52 48 59 50 3
LRP6 375 3.35 1.50 5.21 3.33 3/3 80 78 83 80 3
MesD 750 0.80 0.53 0.98 0.83 0/5 31 16 57 32 5
LRP5þMesD 375þ 750 4.17 2.61 6.30 3.97 8/8 73 64 84 72 8
Kremen-2 750 3.20 2.87 3.58 3.16 4/4 64 61 67 64 4
LRP5þKremen-2 375þ 750 9.69 5.88 15.03 8.93 4/4 81 74 87 81 4
LRP5þMesDþKremen-2 375þ 375þ 375 10.45 9.39 11.51 10.45 2/2 84 81 87 84 2
LRP5(G171V) 375 1.49 0.98 2.02 1.48 1/4 44 35 57 43 4
’’ 750 2.54 1.63 3.69 2.42 3/4 38 23 48 40 4
LRP5(G171V)þMesD 375þ 750 1.71 0.96 2.67 1.50 1/3 45 38 56 41 3
LRP5(G171V)þKremen-2 375þ 750 10.89 6.13 15.65 10.89 2/2 84 82 85 84 2

Data are expressed as fold increase over pcDNA transfection alone, and also as the % of the total radioactive counts that are bound specifically, that is, cannot be displaced
by excess cold Dkk1. Statistical significance, relative to pcDNA alone, was determined using ANOVA and the method of least significant difference. Experiments in which
the pcDNA alone level was below 200 were omitted, as these introduced much higher apparent fold increases.
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previously been noted to have a lower interaction with MesD in

immunoprecipitation studies conducted by both Zhang et al. [2004]

and by Ai et al. [2005], and our studies are consistent with this data.

The significance of this aspect of HBM mutant biology is however

controversial. Zhang’s group suggested that reduced interaction of

LRP5(G171V) with the chaperone MesD may limit the expression of

LRP5(G171V) on the cell surface and hence render the cell less

‘‘inhibitable’’ by Dkk1, resulting in enhanced Wnt signaling.

Fig. 2. Enhancement of Dkk1 binding to LRP5-transfected cells by co-transfection of MesD or Kremen-2. A: Enhancement by MesD: 293A cells were plated at 70 K per well in

a 48-well plate and transfected 24 h later with a total of 1.125mg of DNA/well for 4 h using Lipofectamine 2000, and assayed for 125I-Dkk1 binding the next day. Actual doses

of DNA per well for each treatment: pcDNA 3.1¼ 1.125mg; LRP5¼ 375 ng LRP5þ 750 ng pcDNA; MesD¼ 750 ng MesDþ 350 ng pcDNA; LRP5þMesD¼ 375 ng

LRP5þ 750 ng MesD. Significantly greater than, at P< 0.05, a¼ pcDNA control, b¼ LRP5. Values are means� SEM, three replicates per treatment. (B). Enhancement by

Kremen-2: 293A cells were plated at 40 K per well in a 48-well plate and transfected 24 h later with 1.125mg DNA/well with FuGene 6, and assayed for 125I-Dkk1 binding the

next day. Actual doses of DNA per well for each treatment: pcDNA 3.1¼ 1.125mg; LRP5¼ 375 ng LRP5þ 750 ng pcDNA; Kremen-2¼ 750 ng Kremen-2þ 350 ng pcDNA;

LRP5þKremen-2¼ 375 ng LRP5þ 750 ng Kremen-2; LRP5þ Kremen-2þMesD¼ 375 ng LRP5þ 375 ng Kremen-2þ 375 ng MesD. Significantly greater than, at P< 0.05:

a¼ pcDNA; b¼ LRP5; c¼ LRP5þKremen-2. Labels inside bars indicate the % of radioactive label that was specifically bound, that is (specific counts/total counts)� 100.

Values are means� SEM, two replicates per treatment.
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However, Ai’s group argued that, because there are other prop

1 HBM mutants that do not appear to have a reduced interaction

with MesD but nonetheless were functionally less ‘‘inhibitable’’ by

Dkk1, that interaction with MesD was irrelevant to Dkk1 inhibition.

Recent data suggests that the HBM mutants of LRP5 have enhanced

Wnt signaling not only through reduced Dkk1 inhibition but also

through reduced sclerostin inhibition [Ellies et al., 2006; Balemans

et al., 2008]. Hence, the significance of the reduced interaction of the

HBM mutant LRP5(G171V) with MesD, although reproducible,

requires further research.

In conclusion, we have shown that transfection of LRP5

into 293A cells, in contrast to the robust effects of LRP6, results

in only a modest increase in Dkk1 binding that requires

enhancement by co-transfection with either MesD, Kremen-2 or

both MesD and Kremen-2 to achieve a level of specific binding

suitable for assay. Testing of soluble fragments of Dkk1 receptors in

this assay reveals that prop 3,4 LRP5 (LBD) is a potent inhibitor of

Dkk1 binding, whereas prop 1 LRP5, and soluble Kremen-2 are

weaker antagonists, highlighting the primary role that prop 3,4 has

in the binding of Dkk1 to LRP5. The high bone mass mutation

LRP5(G171V) trended toward a lower level of Dkk1 binding

compared with LRP5, but its most dramatic difference from LRP5

was its failure to be enhanced by co-transfection with MesD.

This cell-based radioactive Dkk1 binding assay, incorporating

co-transfection of MesD and/or Kremen-2, is useful for the

evaluation of Dkk1 antagonists and highlights both the role of

Fig. 3. Dose–response curves of Dkk1 antagonists in the 125I-Dkk1 radioactive whole cell binding assay. A: Cold Dkk1 on LRP5/Kremen-2 transfected cells (375 ng/well LRP5,

750 ng/well Kremen-2). The IC50 in this experiment was 0.134 nM (confidence limits 0.096–0.186 nM) B: LRP5 prop 3,4-LBD on LRP5/Kremen transfected cells. The IC50 in this

experiment was 4.8 nM; LRP5 prop 3,4-LBD was also tested using other transfectant conditions (LRP5/MesD, LRP5/MesD/Kremen) with similar results. The median IC50 from all

the LRP5 prop 3,4-LBD experiments was 5.9 nM (n¼ 6). C: LRP5 prop 1 on LRP5/MesD/Kremen-2 transfected cells. The IC50 in this experiment was 322 nM; LRP5 prop 1 was

also tested using other transfectant conditions (LRP5/Kremen, LRP5/MesD) with similar results. The median IC50 from all LRP5 prop 1 determinations was 166 nM (n¼ 4). D:

Soluble Kremen-2 on LRP5/MesD transfected cells. The IC50 in this experiment was 845 nM, which was also the median IC50 of three determinations. Values are means� SEM,

two replicates per dose.
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prop 3,4 LRP5 in Dkk1 binding and some differences in the biology

of a high bone mass mutation of LRP5.
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